

Transportation Components of Program Constellation

Typical Lunar Reference Mission

Altair Lunar Lander

- 4 crew to and from the surface
 - Seven days on the surface
 - Lunar outpost crew rotation
- Global access capability
- Anytime return to Earth
- Capability to land 14 to 17 metric tons of dedicated cargo
- Airlock for surface activities
- Descent stage:
 - Liquid oxygen / liquid hydrogen propulsion
- Ascent stage:
 - Hypergolic Propellants or Liquid oxygen/methane

Design Approach

- Project examined the multitude of concepts developed in the post-ESAS era, took lessons learned and began to develop a real design.
- Altair took a true risk informed design approach, starting with a minimum functionality design and adding from there to reduce risk.
- Lunar Design Analysis Cycle (LDAC) 1 developed a "minimum functional" vehicle.
 - "Minimum Functionality" is a design philosophy that begins with a vehicle that will perform the mission, and no more than that
 - Does not consider contingencies
 - Does not have added redundancy ("single string" approach)
 - Provides early, critical insight into the overall viability of the end-to-end architecture
 - Provides a starting point to make informed cost/risk trades and consciously buy down risk
 - A "Minimum Functionality" vehicle is NOT a design that would ever be contemplated as a "flyable" design!
- LDAC-2 determined the most significant contributors to loss of crew (LOC) and the optimum cost/risk trades to reduce those risks.
- LDAC-3 (current LDAC) is assessing biggest contributors to loss of mission (LOM) and optimum cost/risk trades to reduce those risks.
- Goal of the design process is to do enough real design work to understand and develop the requirements for SRR.

Lander Design Analysis Cycle 1

- Lander design process kicked off with Design Analysis Cycle 1
- Took a "minimal functionality" approach for LDAC-1
- LDAC-1 completed November 2007

New Philosophy Needed

- For previous programs and projects, the general thought was to apply a failure tolerance philosophy
 - One failure tolerant for loss of mission failures, and two failure tolerant to prevent loss of crew.
- For the Lander, where mass is extremely critical, this philosophy alone will not yield an optimal design solution.
 - There are ways other than redundancy to improve reliability and still reduce the risk of loss of crew.
- We needed a new philosophy where we could develop a spacecraft that provides a required level of safety for the crew and is reliable enough to perform the mission.
 - Defined the minimum set of functions necessary to accomplish the mission objectives.
 - Made it work. Created the simplest & lowest mass conceptual design of the contemplated system.
 - Consistent with NESC RP-06-108, Design, Development, Test, and Evaluation (DDT&E) Considerations for Safe and Reliable Human Rated Spacecraft Systems)

LDAC-1 Starting Point

'Hard' Requirements

- 4 Crew
- 7 Day Sortie
- 210 Day Outpost
- Airlock (implemented on sortie mission only)
- CxP transportation architecture
 - 8.4 meter shroud, TLI Loads, Lander performs LOI burn, CEV IRD, etc
- Control Mass
 - Total Lander mass at TLI for crewed missions: 45,000 kg
 - Total Lander mass at TLI for cargo missions: 53,600 kg

3 DRMs with Mission Timelines and Functional Allocations

- Sortie Mission to South Pole
 - 4 Crew / 7 Days on Surface / No support from surface assets
 - No restrictions on 'when' (accommodating eclipse periods)
- Outpost Mission to South Pole
 - 4 Crew with Cargo Element (LAT Campaign option 2)
 - Outpost provides habitation on surface (down and out)
 - 210 Days with surface support (power)
- Cargo Mission to South Pole
 - Short duration, large payload
- One Lander design, with variants (kits) if required for the different DRMs

Results of LDAC1

Sortie Mission Lander Mass distribution

Lander Design Analysis Cycle 2

- LDAC2's focus was to buy down the Loss of Crew (LOC) safety risks in the point of departure design.
- LDAC2 completion date was May 2008.

Example Risk Buyback Task: #33, Improve Comm System Reliability

- Purpose: Improve Comm System Reliability to be able to update the state vector
- Brief description of problem addressed by your task
 - There are currently 6 single point failures that could cause loss of the state vector input to the bus to the flight computer. This study identifies several options increase communications reliability.
 - Inability to obtain state vector results in LOC for ascent.

Proposed Solutions:

- (A) Redundancy with 2 SDRs (instead of XPDR's), cross-strapped to single diplexer/antenna pair (common EVA comm)
- (B1) PA/LNA Bypass (with switches)
- (B2) PA/LNA Bypass (with cables IFM)
- (C) Redundancy with 1 XPDR & 1 Dissimilar comm system
- (D) Redundancy with 2 XPDRs, cross-strapped to single diplexer/antenna pair
- (E1) Full Redundancy with 2 SDRs strings (common EVA comm)
- (E2) Full Redundancy with 2 XPDRs strings
- (E3) Full Redundancy, 1 XPDR & 1 SDR strings (common EVA comm)

Example Risk Buyback Task: #33, Improve Comm System Reliability Graphical Summary of Options

→ (C) - Dissimilar SV
→ (E3) - Full + XPDR&SDR (w/o x-stp)
-■- (E2) - Full + XPDR (w/o x-stp)
→ (B2) - ByPass (IFM)
-■- (E1) - Full + SDR indp (w/o x-stp)
→ (D) - Full Redundancy
→ (B1) - PA/LNA ByPass
→ (A) - Full + SDR
-■- (C1_Delta) - Baseline

Option	Mass (Kg)	LOM	LOC		LOM	LOC	LxC
(C) - Dissimilar SV	23.95	5.45E-03	6.86E-06	1 in	183	145698	1x5
(E3) - Full + XPDR&SDR (w/o x-stp)	27.06	4.70E-03	6.62E-05	1 in	213	15117	2x5
(E2) - Full + XPDR (w/o x-stp)	31.65	1.42E-04	1.06E-04	1 in	7023	9435	3x5
(B2) - ByPass (IFM)	22.23	3.97E-03	1.94E-04	1 in	252	5143	3x5

Another Example: Active Thermal

LDAC-2 Overview

- The initial Lander Design and Analysis Cycles (May-November 2007) created a "minimal functionality" lander design that serves as a baseline upon which to add safety, reliability and functionality back into the design with known changes to performance, cost and risk.
- ♦ LDAC-2 completed in May 2008. Goal was to "buy down" Loss of Crew (LOC) risks.
- "Spent" approximately 1.3 t to buy down loss of crew (LOC) risks.
- "Spent" an additional 680kg on design maturity.

^{*} Note: Based on simplified models that address identified risks.

Lessons Learned During Risk Buy-down

- Full redundancy was usually heaviest, frequently NOT most effective for improving LOC
 - Conclusion may be different for LOM
- Quantitative risk tool was necessary to <u>inform</u> good design decisions
 - Always necessary to correlate engineering judgment with tool results
 - Tool forces team to reconsider
 - However, cannot rely solely on tool results. Must be able to technically explain decision.
- A risk tool the designers can interact with is a significant aid improves tool and design
 - e.g., when a result did not correlate with engineering experience, designers could easily understand model in tool. Sometimes changed model and sometimes did not.
- Designing for minimum risk
 - results in lower weight design
 - is much harder and time consuming than simply adding redundancy
 - But, design team ends up much more intelligent on risk and design drivers
- Design for Minimum Risk is the way to go if you are trying to build a smart design team